SHARPSOFI?




SHARPSOFT - USER NOTES

Issue number 2 June 1981

Thank you all for supporting these user notes. For a venture like
the SHARPSOFT user notes to be a success it needs support from our readers.
The initial response means that we are in a position where the first
years overall costs, printing etc, are covered. Our aim is not to make
money on these user notes but to offer M2-80k users a low cost publication
where ideas can be exchanged. Most of the editorial work is done on a
part time basis which helps to keep costs as low as possible. So if you
have comments, ideas for articles or indeed articles do send them to us.
In this issue we include a number of programs and articles from readers.
Mr. P.L. Birch has been using "Word-Processor WPI. and has extended it
for his own needs. These extensions are useful and we hope they will
allow other users to improve their word processing Software

Over the last few months quite a number of M2-80k owners have
written to us with ideas for the user notes and related topics. Here
are two of the more general interesting points.

One reader requested that SHARPSOFT start a "listing service" for
those M2-80k owners who do not have a printer. This we are prepared to do.
initially for a trial period, to see if there is enough demand. To start
with we propose to restrict the service to BASIC programs on cassette
only. A small charge of 30p will be made for each cassette listing.

So if you have a program on cassette which you would like listed
send it to us with a strong 9" x 11" self-addressed stamped envelope,
including the 30p charge, and we will return your cassette with a
listing. One program per cassette please.

A second reader has suggested that many M2-80k owners might be
interested in corresponding with other owners and could we generate a
list of M2-80k owners who are prepared to exchange letters. This
sounds like a good idea but, of course, does require us to generate a
list of names and addresses. Again we are prepared to generate this
list if there is enough demand from our readers. If you are interested
write to SHARPSOFT and we will send out a form which you can fill in.
Once returned to us these forms will be used to generate a list of
M2-80k owners who are interested in corresponding with other users.

In this issue of the user notes we include a number of programs.
SHARP (UK) have given us permission to publish the listing of their
version of the game STAR TREK. This is for your personal use only
and is a copyright program.

A TINY PILOT, with editor, program is also included. We hope you
find these programs interesting and fun. The TINY PILOT was written
to help those readers who have never used PILOT experiment with the
language. It represents a collection of the best ideas previously
published in the popular computing magazines. Again this program is
for your personal use and must not be copied for commercial publicationm.

Since "Crystal Electronics" released their version of CP/M the
amount of Software, particularly new languages, which has become
available for the M2-80k has increased considerably. We are concious
however, that the majority of our readers do not have discs or CP/M.

At SHARPSOFT we use CP/M based M2-80k computers for program development
and whenever possible attempt to make cassette versions of software
available as well as disc.

New computer languages for the M2-80k is one of the areas we are
concentrating on. Two languages, "Tiny-C" and "Forth", have so far
been developed by us to run on the M2-80k. We are currently able
to offer our users both cassette and disc versions of the Tiny-C
language and a disc version of FORTH. In the next few months wore
work is needed to complete the cassette version of FORTH.




vl Er oo

R '7%1&’“1 f thIM B e "w;

3 oy

gggy w08

¢a)xWﬂp:1 Fabnay ant
otfe S aawe J;N\n'l’ L



SHARP BASIC reference notes

DISC BASIC

The SHARP DISC BASIC (SP-6015) is an integrated package which consists
of a set of BASIC commands, Keywords and functions similar to the SHARP
cassette BASIC with, however, extensions for disc file creation and access,
and a simple to use disc operating system

Each disc file is described by an extension, SHARP call these extensions
Modes. File extensions are given the names

BTX BASIC text file (program source)

BSD BASIC sequential file (sequential data)

BRD BASIC random access file (random access data)
OBJ OBJECT code file (machine code programs or data)

The contents of a disc may be listed on the console V.D.U. by entering
the command DIRn (! - 4), followed by a carriage return; where (1 - 4) is
the disc drive number.

Listed files with a "#" following the extension name indicate that the
file is LOCKed and cannot be deleted from the disc using the DELETE command.

Disc Operating System Commands

LOCK This command locks previously recorded files. If a file is
locked, the file may not be DELETED or RENAMED until it is
unlocked using the UNLOCK command.

The general form of the LOCK command is

LOCK FDd, "File name"

Where d is the disc drive number (1 - 4) Which contains
the file called "File name".

UNLOCK This command unlocks a previously recorded and LOCKed file.
Its general form is

UNLOCK FDd, "Filc name"

Where d 1s the disc drive number which contains the file called
"File name".

RENAME This command is used to rename files. Its general form is
RENAME FDd, "File name 1", "File name 2"

The file on disc drive d called "File name 1" is renamed
"File name 2'". NOTE the contents of the file being renamed
is not changed by the rename operation.

DELETE This command deletes a named file from a disc. Its general
form is
DELETE FDd, "File name'

In each of the above operating system commands, excluding the DIR
command, if the disc drive number is NOT specified BASIC SP-6015 will assume
the disc drive number used in the last DIRn (1 - 4 ) command. This short
form of the operating system commands simplifies the us of ‘i.e LOCK,
UNLOCK, RENAME and DELETE commands. Also remember following a DIR operation
full screen edit mode operation is allowed using the keyboard yellow keys
to position the flashing cursor.




Files with the extension OBJ. e
SHARP BASIC §P=6015 does NOT generate files with the exfension 0BJ.

This extension is reserved for machine code program or machine cude data
files. 'These programs are normally generated using a 780 Assembler, for
example the SHARP SYSTEMS program package, or the SHARP MAGHINE LANCUAGE
program. Both these packages are cassette based programs where the final
object code program is stored on magnetic tape in a form which can be
directly loaded and run. To generate a disc file which contains an object
code program the SHARP "tape to disc" transfer utility program must be used.

Instructions for this operation are outlined in a latter section of
these uger notes. However, once a file with the extension OBJ is created it
may be run from disc using the RUN command. Execution of the object code

program is automatically started from its load address, normally 1200H.
NOTE, using the LOAD command for a file with an OBJ extension will cause
an error (file error 63).

Disc data files

There are two types of disc data files which may be created and accessed
by a SHARP BASIC program; there are sequential files and random access files.

Sequential files

Sequential files are easier to create than random access files but are
less flexible when accessing the data. The data that is written for a
sequential file is stored in the order, i.e. in sequence, that it is written
to the file and is read from the file in the same order.

The sequential disc file BASIC commands are:-

a. Writing data to a file.
File open command WOPEN#n, "File name"
Data write command PRINT#n, data
File close command CLOSE $#n
Cancel command KILL$Fn

b Reading data from a file.
File open command ROPEN&m, "File name"
Data read command IMPUTHn, variable
File close command CLOSEf=n
File end Test 1F EOF (Xn) THEN.....

Where n is called the file "logical number" which must be in the range
| n 127.
The complete specification for the file open commands are
WOPEN 1, Fpd  @v "File name"
ROPEN & n, Fbd  @v "File name'
Here, d ig the disec drive number and V is the dise volume number.
NOTE, often when creating or accessing sequential files the d and V extensions
are not used, They do however, allow. for esample, the identification of
individual discs in a disc library.

The following steps are requited to create a sequential data file and
accesses the data stored in the file,

1 Open the file - for writing WoPEN#1, "TEST"
2 Write data for the file using
the print statement PRINTAF 1, A¢, B¢, C#
3 To access the data stored in
the file, the file must first CLOSE#f 1
be closed then reopened
using the ROPEN statement . rROPEN ¥ 1, "TEET"
4 Data is read from the file
using the input statement inpuT ¥ 1, PIR, P2%, P3§.




The examples given in steps 1 to 4 show a file opened with logical
number 1. Due to the high speed access of a disc, when éompaired with a
cassette tape, and the parallel arrangement of files on a disc, SHARP BASIC
programs can simultaneously open and access a number of different files.
SHARP BASIC allows a maximum of 10 files to be opened at one time.

The following example may help to clarify the sequential file access
procedure.

1@ WOPEN3F5, "DATA"
2¢ INPUT "NAME"; N§

25 IF Ng = "END" THEN 100 BSD file
3@ INPUT "DATA 1 "; DI§ creation
4@ INPUT "DATA 2'"; D2@ program.

5¢ PRINT 5, Ng, DI§, D2§
6@ PRINT: GOTO 2¢

1@ CLOSE#5 : END

10 ROPEN#5, "DATA"

2¢ INPUT#5, N$, DIg, D2§ Sequential

3p IF EOF (#5) THEN CLOSE 5: END access of

4(p PRINT N§, DIg, D28 a BSD file

5@ GOTO 2¢ - output to
a V.D.U.

Adding data to a sequential file.

If you have created a sequential data file on disc and wish to add
more data to the end of the file then the following procedure could be used.
We first open the orginal file, called "DATA" in the following example,
and copy its contents for a tempory file called "TEMP". Finally, the
orginal DATA file is deleted and the contents of TEMP are copied back to
DATA to form the updated file.

1§ ROPEN#1, "DATA™

2 WOPEN#2, "TEMP"

3p INPUT #1, Ag

4¢ IF EOF (1) THEN 1¢@
5¢ PRINT# 2, Ag

6 GOTO 3%

1¢¢ INPUT ' NEW DATA"; Ag¢
116 IF A$ = "END" THEN 200
12¢ PRINT#2, A%

13¢ GOTO 109

2% CLOSE# |

210 CLOSE#2

22¢ DELETE DATA

3¢9 ROPEN#2, "TEME"
31¢ WOPEN#F1, "DATA"
326 INPUT#2, A

339 IF EOF (#2) THEN 4@
340 PRINT #1, Ap

35 GOTO 320

4§ CLOSE#1

41¢ CLOSE#2

5¢¢ DELETE "TEMP"

6@9 END

s The above example could be improved, of course, but has been deliberately
written in small blocks to demonstrate sequential file handling.




NOTE, the tempory file is deleted at the end of the up-date Requence in
order to remove from the work disc an unwanted file. Also note that when
an attempt is made to read beyond the end of a file the special Funetion
EOF ( n) is set to "TRUE". This condition is tested using an [IF. s HEN
statement, for example in lines 40 and 33@, where a branch to a latter
section of the program occurs.

Random access files.

Creating and accessing random access files requires more program steps
than sequential data files. The biggest advantage to random access files
is that data can be accessed randomly anywhere on a disc and it is not
necessary to read through all the information in a file to find a specific
entry.

In a random access file data is stored and accessed in distinct units
called records. Each record is numbered, When writing to or reading
from random access files the PRINT and INPUT statements are modified to
include a record number. The general form of these statements is

PRINT n (record number), data

INPUT n (record number), variable

Each record is recorded on disc with a fixed 16 byte length. It is
inportant to remember that numeric variables will always fit into 16 bytes,
even when expressed in exponential notation, but STRING variables can have
a length up to 255 bytes. Hence, normally strings cannot be recorded in
one record but extend over a number of records.

There is only one open statement for random access files, this is
called XOPEN and has the general form

XOPEN n, FDd @V "File name"

Two examples, showing how to use the random access file commands are
given on page 44 of the SHARP DISC BASIC manual. These examples should
be studied in detail if you are not familiar with random access files.

It is also possible to write BASIC programs which use both sequential
and random access data files in the same program. Complex and powerful
file systems, for example in data base programs, often use sequential
indexed random access files. These techniques are possible with SHARP
BASIC and there readers interested in experimenting with file structures
should consult any of the standard texts on the BASIC language.

CHAINing BASIC programs.

The storage capacity of a disc is far greater than the random access
memory storage of the largest M3 = B0k computer. Hence, it is theoretically
possible to store on disc BASIC programs which have a length greater than
48k. However, it is not possible to load and run such large programs.

To overcome this problem SHARP dise BAHIC is equiped with a speclal command
called CHAIN.

The CHAIN statement is used to load and fun a BASIC program from an
already loaded program. An important feature of BASIC is the fact that
all variables are global. When the CHAIN statement is interpreted by
BASIC not only is the new program loaded by BASIC fo RAM and run but the
variables, and their values, in the previsus program are preserved for use
by the new program. This feature allows very larpe programs to be
segmented into unique sections then rum using a scries of connecting chain
statements. The general form of the CHAIN statement is

CHAIN FDd @V  "Program name"

Note, the CHAIN statement can be considered as an extended GOTO statement
with the disc acting as a virtual memory.

The SWAP Statement.

The SWAP statement provides a similar function to the CHALIN
statement. It is interesting to note that the SWAP stat?menﬁ may be
considered as an extended SUBROUTINE facility with the dise acting as a

virtual memory.

\




When the SWAP statement is interpreted by BASIC the current
program in memory is stored on the disc and a new program is loaded from
disc and run i.e. SWAPed. On completion of the new program the reverse
process takes place with the old program SWAPed back to memory. Interpretation
of the original program then continues from the statement following the
SWAP statement. Again variables are preserved during the SWAP sequence.
Note, nesting of SWAP levels is NOT allowed. The SWAP statement is a
non-standard feature of SHARP disc BASIC. The keyword SWAP is used in
other BASIC'S,for example the Microsoft MBASIC interpreter and BASCOM
compiler, but in general it has an entirely different meaning.

The general form of the SWAP statement is

SWAP FDd, @v, "File name.




DISC BASIC Utility Programs.

Three machine code utility programs are provided by SHARP with
BASIC SP-6015. There utilities are used to initialize a new disc,
copy programs from one disc to another and to transfer programs from
cassette to disc.

Disc Initialization Utility.

This program is used to format a new disc. Discs must be formatted
before they can be used to store programs or data.

Disc Copy Utility.

This program allows the contents of one disc, usually in drive 1,
to be copied to a second disc, usually in drive 2. However, the program
will not copy the master disc system and BASIC SP-6015 tracks. A special
extended version of the copy program is available from SHARPSOFT which
does allow the entire contents of a master disc to be copied. We use
this extended version for making back-up copies of our master disc.

Cassette tape file to disc transfer utility.

This utility is in two parts. Part one is used to transfer files
held on cassette to disc. The cassette files can be BASIC programs or
data, or object code programs. Do remember that BASIC programs,developed
using SP-5025, with POKES and PEEKS will often not run using SP-6015.
Some slight changes are normal.
The second part of this utility is used to transfer, or convert,
files on cassette with the OBJ extension to a disc file with the BSD extension.
The BSD file can then be output to the VDU or printer with the hex memory
dump represented by ASC Ilcodes. The listing program is given on page
178 of the SHARP disc manual.




—

Machine code routines with BASIC.

Often with large programs or programs where a considerable number of
calculations take place or programs which require constant updating of a
graphics display then interpreted BASIC is simply not fast enough.

All modern BASIC interpreters allow users to include machine code
routines in their programs. BASIC is linked to the machine code routine
using the PEEK, POKE and USR statements.

Two points are important when using machine code routines;

1. You must have a working knowledge of 280 machine code and Assembly
code programming.

2. Machine code routines are much faster than BASIC - the speed
improvement can be as high as 100 times faster.

Normally machine code routines are loaded with a BASIC program -
this is to make the compete program self-contained. The machine code
operation codes and data are placed in BASIC DATA statements, remember
DATA statements expect the data in decimal not binary or hex. On
running the BASIC program these DATA statements are READ and the data
is POKED into memory - one byte at a time.

Normally machine code routines are POKED to memory at the top end of
RAM well away from the BASIC interpreter and your BASIC program. To stop
BASIC overwriting your machine code SHARP BASIC allows the user to specify
the end of the BASIC work area with the LIMIT statement.

Once a machine code routine is installed in RAM it may be called from
BASIC wusing the USR statement. The argument to the USR statement is the
absolute memory address of the start of the machine code routine. Do
remember the last operation code in your machine code routine must be a
RET statement, otherwise control will not return to BASIC on completion of
the machine code routine.

An example of a BASIC program with a machine code routine included
is shown on page 119 of the SHARP M2-80K user manual.

Further information on machine code routine linkage to BASIC is given
in the SHARP disc BASIC and systems program manuals.




10

BASIC SP-5025 Hints.

1c Enter LOAD: RUN and a program will load and run itself.

2 USR (68) turns sound on.
USR (71) turns sound off.
USR (62) sounds a bell.

3. POKE 4465,1 to 40 moves the cursor axis.
POKE 4466,1 to 24 controls the cursor axis.
Thes POKES save typing in all those reverse field arrows for
cursor movement .

4. POKE 57347,4 turns the front panel LED from green to red.

5% POKE 59555,@ blanks the screen.
POKE 59555,1 restores the video.

6. POKE 10167,1 removes the PEEK protect from SP-5025 BASIC.
Note, an unprotected copy of BASIC can be made by the following
steps.

1. load BASIC
2. enter POKE 10167,!
3. enter the single live program
16 USR (33) : USR (36)
4., then enter RUN and a copy of the SHARP BASIC will be saved
to tape.

7. BASIC programs will auto start if you enter POKE 10682, 1 before
saving to tape.

If you have any tips - POKES etc, write to us and we will include them
in a later edition of the "user notes".

e




n

Letters

Our thanks to everyone who wrote to us since the publication
of the first issue of the "user notes". Your comments and ideas will
allow us to provide information which helps all M2-80k users get the
best from their computer. Here are a few of the points from our
readers.

I have found that if you run the program

10 GET Ag : PRINT A$: GOTO 1§

The key 'DEL' produces a spaceship, CR a ¥ , SML a i and

various other things from the yellow keys.

SIMON ROCKMAN

HA89QN

I would like to point out that the LET command can be used in
BASIC SP-5025, but can be ommitted (in common with most BASICS).

In response to your suggestions for programming tips, POKE 57346,75
turns the front panel light red,and POKE 57346,79 turns it green. As
the upper/lower case mode is not affected these have been useful for
1. Indicating an operator error (when flashing from red to green, and
accompanied by sound).

2. Indicating when input is required.

B. TANNER

WRIA |HN

There is an apparent error in numerical variable range quoted
on page 22 (user notes issue 1). On my M2-80k with SHARP BASIC SP-5025
the range is approximately only 10-19 to 10+19.

As I am a scientist and frequently find the need to use higher
range number than this I would be interested in whether the SHARP BASIC
SP-5025 can be POKED to allow higher range numbers.

D.J. STEEL

L BH22 8QU

Comments on SHARPSOFT User Notes:- very useful. Some suggestions
for future editions.
a. More information on the use of PEEK, POKE and USR statements.
b. Because I cannot read music and cannot use the sound aspect of the
M2-80k as much as I would like. How about some programs for popular
melodies, light classical etc.
c. Programming tricks e.g. FOR I=1 TO 1@¢@ : PRINT " " ; NEXT I for
generating a pause in the program.

There must be dozens of things like this.

B.P. WINDIBANK

L37 IPE




12

As a newcomer to the computing world I am sure that other
beginners experience the same problem as I do, which i# trylng to
find out what some of the simpler terminology actually means

e¢.g. Whatever is an "Editor/assembler/debugger"

URPASTC ‘toolkit!
"Can I use XTAL on my basic M2=80k?'"

I must say however that your catalogue goes a long way to
answering some of these questions, but could you include in ome of
the issues of "SHARPSOFT USER NOTES".simple explanations to some of
the termenology that would be of use to the layman who is starting
from scratch with a computer.

L.M. BEADLE

0X14 2HG




13

Tiny~c for the M2-80K

Two versions of tiny-c are now available for the M2-80k; a cassette
version for 48k machines without discs and a CP/M version.

Tiny-c is a subset of the C programming language developed at
Bell Laboratories, Murry Hill, New Jersey, U.S.A.

Tom Gibson and Scott Gurthery of Tiny-c Associates designed the
small c subset which is well adapted to the microcomputer environment.
The subset is distributed by Tiny-c Associates in a hard copy form with
instructions for implementing the language on 8080/280 microcomputers.
Sharpsoft have written the input/output and cassette storage machine
code routines needed to run tiny~c on the M2-80k. The cassette version
of tiny-c is available as a package including a copy of the tiny-c owners
manual and the language cassette which loads from the SP2001 monitor.

A seperate CP/M version on disc configured to run under the XTAL CP/M
operating system can also be supplied on request. This version uses disc
program storage rather than cassette.

Tiny—-c is really two seperate packages. These are called "Tiny-c
one", and "Tiny-c Two" Tiny-c one is an interpreter for the C language
subset and Tiny-c Two is a compiler for the C language subset. Tiny-c
Two is only available from Tiny-c Associates to run on a CP/M machine
with 8" discs. 1In the future we hope to offer a version of Tiny-c Two
to run on both cassette and disc based M2-80k computers. Work has
started at SHARPSOFT on configuring the Tiny-c Two package for the
M2-80k. We anticipate that three to six months development time are
needed before we can offer the compiler to our M2-80k users.

The interpreter and compiler are upward compatable products.
Normally programs are developed using the interpreter then compiled using
the Tiny-c compiler. The compiler produces code which gives a speed
improvement of roughly "Ten'"Times., This, of course, makes those "slow"
programs much more viable.

C is versatile, expressive general - purpose programming language which
offers economy of expression, modern structured control flow and data
structures, and a rich set of operators. C is not a "very high level"
language, or a "big'" one, nor is it specialized to any particular area
of application, Its absence of restrictions and its generality make
it remarkably convenient and effective for a wide variety of computing
tasks.

C is concise - you don't have to write a lot of code to get a job
done. Yet at the same time, C programs are readable -~ you can understand
what you, or someone else, have written. This combination of brevity and
readability is rare in programming languages, and is part of the reason
that C is so widely used.

Tiny-c retains C's expressiveness, conciseness and readability, yet
sacrifices very few of its features. At the same time, Tiny~c provides
a computing environment that will make it easier to develop programs.

The language is provided with an editor and other library functions that
together make a program preparation system.

A Tiny-C program
/ * guess a number between 1 and 100
/ * T.A. Gibson
gues snum
int guess, number
number = random (1, 10¢)
pl "guess a number between 1 and 100"
pl "type in your guess now'"
While (guess ! = number)[
guess = gn
if (guess = = number) pl "right:!l"
if (guess number) pl "too high"
if (guess number) pl "too low"
P]. o ; pl non
J /* end of game loop




14

] /* end of program
/%
/* random - generates a random number
int seed, last /* globals used by random
random int, little, big [
int range
if (seed = = @) seed = last = 99
range = big - little + 1
last = last seed
if (last @) last = - last
return little + (last / 8)% range

If you believe "Tiny-c ONE" is for you contact us at SHARPSOFT
for the latest information on availability and cost of the "Tiny-c ONE"
package.




Games STAR TREK

If an opinion poll was taken amoung computer hobbyists regarding
the most widely known programs then it is likely that the game STAR TREK
would come in the top ten. STAR TREK is a classical computer game.
Versions vary in size from 4k "Tiny treks" to a CP/M 46k '"Megatrek'.

The rules tend to be similar for most versions and are typically as
follows.

The object of STAR TREK is to destroy all the klingon ships within
a given number of star dates. The galaxy is divided into 64 quadrants,
with each quadrant split into 64 sections. The galaxy is initialized
with stars, Klingons and a number of star bases placed randomly throughout
the 64 quadrants. A quadrant is initialized each time it is entered by
the Enterprise.

You as Captain Kirk control the Enterprise; its movement, photon
torpedoes and defence screens. The star bases are available to replenish
your supplies.

Six commands are available to you:-

1. Fire phasers.

2 Fire photon torpedo.

3. Move the Enterprise.

4. Display short-range sensor scan.
Si Display long-range sensor scan.

6. Display known galaxy.

You may change the computer readout, move the Enterprise or fire
either a photon torpedo or your phasers at any time. If you are in a
quadrant occupied by a klingon, he will fire at you and move each time
you enter the quadrant, manoeuvre, or fire at him. We would like to
thank SHARP (UK) for allowing us to publish the listing of their version
of STAR TREK.

Good hunting !

The SHARP (UK) version of STAR TREK is a copyright program and may only
be run on a M2-80k for personal use. Full rights are reserved by

SHARP (UK).




16

Ek Do

riakt SHA

Tl uuuu nuu'uuuuu
=" TTTTTRERETRETOR TG T 2GT UET SE000GRG "

AOEER ADEEEEH FHOEBEEEERFRHAREEEEEEA A
GaF="0E5E06H FIB A G EEE Hﬂﬂﬂﬂﬂﬂ“‘u SE=GEIEHGLE

]+“a“.ﬁi,

CTA11R0FOR T

Ea=k3: PR
i EHTTLE IFHI EF-\ IH"z T-l Tés

A=1 TO 18 HEST
] Pels

P ATHEH H=E: S=@:
HT H 18108k

1:HEXT J-1:¢
IF I<k THEH GOSUE

S I=1-1:G0T0 328

T= 1 TOoaee: HEXT
GOSUE &5

L EREEERRE 1y L

FFIHT“ VERRS, "t FRINT "84 THE MUMBER OF STARBRSES IS “:E9:

L =Y EOTO 268
PEMERT J.1

40 Ged="RRRROBEGER  FUBRGEGR  ROGE DEZEER  RESEGEE"
45 Gr$="R  RBGGSEER  RODOODG": GEd=
50 G3$="EEEEETRERAGENGEIREEEENGRANED EQGDEDE"
S5 GE$="K  KDEBEREK  KDSGEGK KOG BREK  KEBREERK  KEDOROD
6 PRINT"EBR'iG1$:" "iE2$1" U
£5 FRIMT:FRINT"BRERONS":FRINT THE QI TR
7@ FRINT"DEESEERRNSSRESSSas0s
7S FOR k=1 TO 266:HEXT K
MM$="—"EBR"ER"ER"ERTER"  M1$=""EGR" 1 o
=" CADEF GRE-CCDEFGAETD " § Ma4$=""CBREFEDC" :
JEETESCOBBOAGE. | -UOGRERES-  -1UB83GEE | 7
ot E$ i 1 "_ 11— i
H i ‘ 5 lﬂ.ﬂgﬂmll x ."'

e




T

468 IF E<=8 THEM 1524
418 I=1:IF [oIx:6 THEW
411 IF K>B THEH GOSUE
428 PRIMT"E": :MUSIC P COMPUTER CSTATUS REFORTH
438 FRIMT:ME=" > "ipUE IL Hlf FFIHT Hf'“”EHF -“'T?~T

435 PRIMT:MUSIC M1f:PRIMT ME: "STRRDATE=":T:PRINT

448 MUSIC M1FiFRINTHE: "COMDITION=" 3 CE:FRINT i MUSICHLF

443 PRIHTMi;"@UHDEHHT=“:Q1+1;"—

445 FRINT BE+1:PREIMT:MUSIC
456 FRIMT M#: "SECTOR=":S1+1:"-"352+10FRINT

485 MUSIC MIf:FRIMT ME: "EHEFIJ”=

JE FHF H 1 TH E th FFIHT THEf a3 MM iHERT UsPRIMTIFREINT

FuF U—l TH Fi FFIHT TREC4
MUSIC Mif:PRIMT ME: "ELIHGOH "3
* FOR Z=1 TO K9:PRIMT THEY 4'=iHF$’
FHF T~—1 TO SeeE: MEXT

AT VEPRINT:FRINT

PW=IHTERNHD L L 50 i RETURH

#ODE=LDOCKER" 3 THEW SE8
="DOCEEDR" Y THEH FETNFH
5 THEH FFIHT"”“" &

uﬁTn SEE
CE="DLOCKED" : E=EG: F=F8

FFINT"EBEEEEEEEBBEEEEEEEEEEEBE B COCKIMG TO STAE ERSE"
IF (FG 'Fb—4 THEH =35

GOSLUE
FETLIREHM
FuF I=8 TO F:IF E
CECT kB, dRHDCL
E$-" EHMTERFEISE FEOM E
FREIMT H:" HHIT HITlHl H

ETLRN
t RETLRH

« 12 THEH 1 $=1HF$'1_J,
EC1EG D 2 RETLIRH
! TO Sl Ha=@ HEXT: FETURM
F MUSIC Mz FREINT DF 2" DAMAGER"
A PRIMT #1003 Y WERRS ESTIMATED FOR REFRIR."
IF A=1 THEH EETLIEH
SIC HN$ THREIT IHHHHH[ T OViRF
: RECCA$ #5405 THEM MUSIC MZ$:GE0TC FaS5

F'F‘ THT " BCOMMAND

Ir o




et ke kbt

= A
T T O G

MR

&
(5
5

[ S S O S S el
1=

s
4
5
£
-
=

=
E

R
20

GEOTO 297
[T
IF
MUSIC
FEIMT

ERIMT" #+ SFOCE USEDR
FPRINT GGG "

HEOTO ip.

FOR I=8 T0 S:FRIMTI+1:"= DT HERTIPRINT "BV 25070 758
IF Didoas=0 THEH
LSIC SRRINT"TO

H=15: IF F<1 THEH PILE SERIMT " HO TORFEDOES
IF A=5 THEH MLEEIC Mif: FFIHT" FHOTOM TORFEDOES"

WlIlrnf IHRUT" COURSETLI-2,90 ":l: T 1. ThEY

1F H—“ THEH =F-1 8 GEO0TD F486

MUSTC Mi$: IMFLT"E WARF (@, 125-120 "sWiIF cle=6, 1Z50#0=12]

FRIMT"2E"
PR LNT W

“'u”‘ S TEE:GOTO &7
SlEE:IF CE-Wac& THEM 15

THEH GOEUE FIE:SOTO
5]

[—

B THEMH 937
MiF: 5050

A HEW EEFPAIR TECHMIGUE ="

FFIHT"" o " RRE FIKEDR !

=~ LG, S8 T=T+18

THT (%133 B2=INT (12
THEM FRINT:GOTO 126G

5005 HE .1HH
IF A=5 THEH B=E-12
FRIMT"DE8E":

IMIERINT

AGHIMET & METEORITE !'":I=4:G0OTO FZ'
EERT o ek T

=4

m

=6

o
Iax]

¥



GOTO 1263
PRINT! ELOCKED BY ELIMGOM!
WE=THT 41 = 1=

FOR =1 Tn 3%
FRINT"ZEEN":

! ieommEn GOT ] 25E

kbl FURERGOTL 1338

FFIHT” EEE* ”. © DAMAGED - MERREIMT Lol i3 "WERRES ESTIMATEDR FOR REFAIRT

HYSIGFOR T=0 T 72 1F K30000=8 THEN 1460 \
070 14

IF YWi=¥ THEH 1438

FOR =1 TO 3s07-4ZitPRINT:HERT
PEIHTEBEEEEEEEEE““ non
B FOR I=& TO FiIF } 3=j THEH 149H

5 Ef‘”}LIHEﬂr”:h—' $H=H{ T 0 GOSUE &7

G IF F30I006 THEM 1490

i PRIMT"~=-kLIMGEOH DES TR =
s 13Tk Tra=tz

uHTn 125
I=2:IF D*lliﬂ THEH TZE

IHTHE "cDEciasy QUADERAHT" @i+1z -0 1o a0
EOSUE  17AG

GOTO PR

I=5:2IF D'I"H THEH FZ&

FRINT"E": [Fd UOBTHRLATE "sT

GOSLE s H
FRINT"EY ﬂﬂﬂfﬂﬂﬂﬂﬂﬂﬂﬂﬂ* STHREDATE "sTa" &M "BERY RETURH

GOOUE 153FsFRIMNT " THAMES TO YOHRE BUMGLING. THE FELREEHTION B WILL EE":
FEIMT" COMOUERED EBEY THE FEHHIHIHUS“'FFIHTTHE : LIHGIH Ll ISERS Y
FRINT"SEEEEY 00 AFE DEMUTED T10 Io1elsEOTO 1esy
E=UE 1580 PEINTTRE A s Toik ! PR BT
PRIMTTAECS 2 "SUL ARE FRO T H[HIFHL :

ERINT 4 MOl BESTRENMERS: By 0 llIthH— ITHY s T~ Th’“ VEHRS

S "EERATIMG="S IHT VBB o T-Toy + L EGE s - 8Y

FOSLE
IHFUT"TRY BGAIN 7 LRSS MO=M T ES
IF LEFT#CE#. 1o="4" THEH 14




GOTO 156
FRINT"Z":MUSIC MME: MI=S:FPRIMT.TAEBM12:
FOR M= 1 TO QE+1:Mi=M1+4: PRINT ME+1:TRECML 33 s HEXTeFRINT
4 PRINT THEC4):" e "
FOR Me=01-1 TO G1+1
43 FREIMT MA+1:TREC4 2 sFOR Mi=a TO Z:PREINT" "1 aMHERT M1:FRINT
4 PEINT TAEC4»: " —-rA—A—d "t HEXT M@
4 FRINT"GE": :FRIMT:FEINT TRE:C 48" b—reoebeete M PR THT Y BRBG oo ' s FRINT
4 FOR I=01-1 TH Bi+1smMi=5 FRINT THECML 23

FFIHT FIGHT$ e
M1=Mi+4: FRINT THECHLY3 i HEXT JiFR]
FFIHT”RBEES"' FRIMT: FFIHT THE 12
. Tllﬂ'.lﬂll:
E Z7PSAS0N TH G0
FFIHT”UHEB" RETURH

_».—i-

FFIHT"F" P
FOR I=8 TO

FEIMT TH :
FOR J=8 TO'
HE=T:RETURH
1 FRIMT"OZRORE": FRIMT"
FEIH L
FREIMT" —_

4 PRIMT"
3 PEINMT
3 PRIMT"
3 FRIMT
FEINT"
FEIMT"
FREIHT
FRIMT
FEIMT
FREIMT
FRIMT

STEECI+1 05
FRINT TaEX

PIRFCECL Ja s s HERTiFRIMT i FREINT

3

FRIMT"GEREE
TH=Tr+110H
0 FOR M= TO
FEIMT TREC4:
FRIMT TRE::
MUSIC MZ2# FFIHT“
FFIHT"mB“ IF

SPRINT THEO4:5 "4 BE": GOTO 2285

LEUIGE0TO 22E5

}Mf 1--}1 Tt bnTu Z44m

FHF I=G T0O



2458 FOR M=2 TO
B TH=Ts+1:0M T

Wi

HEXTS T3 -3
FRINT"[": IF

RETURH
A PREIMT:FOR M=8 TO 1:pdsIct
A FRIMT:FOR M=8 TO 1:FRINT
3 MESTGOTO 245@

S2+T s WECM e GOTD 251G

FFIHT”E"’IF Y
PREIMT:FOR M
TH=TH+150H
FETUREM
FFIHT“"” HMLSIE H4$

L [INCAR 1 B DGO 1 O I S T
FFIHT“EEEEE“;:”:'
FOR J=1 T 12-1:F
FOR JI=1ZTO42TEF-
FOR J=1 T 1%-1:
FiOR J=4TO12 H
FOR EA=1 TO
FREIMT:HE=T I
FOR I=1 T 7
FREINT"GGE6E"
FREIHT"E" Mg @ Mi=4iFE
FOR ME=1 T 1=M1+4 s FREINT M
FRIMT"EEE — "5 s FOR ME=g TO &if
FOR Ma=1 T0 2
FRIMT M@ "5 FOE
FEIMT"S6E F—"1412
PREIMT"GEas "3 0]
FOR Hn (B} i .
FOR I= I7 ? fl=dt PEINT THE Fl';

TOOTTPRINT" 5 HERT

SaiHERT

PPRIMTENHERT I

LT L T T ) =y
I B B B

ot 12 BETURH

FEIMT TAE®
FRIMT"33G": ¢




22

2 T

: L :I:FPIm RIGHTEL G0 +EF. T2 1 50TO 3675

FFIHT“E"” fefld Nk
FOR M=a T 1:FFE

B FRIMTVERE" 3 THE L

] FREIHT"&" ¢ FOR ps
FREIHT"GG" s TH
ERIEIT s R
FAE-T’ Tn nn.TH )
FEIMT: FREIMT: FI -
FRIMT"G&G"s THEC11 13
FRIMT: FRINT: FOR M—
FRIMT"GR": TH
FRIMT"@E": E
FORE M=1 TO Z: HT TH e LS G s TEHERT
FF I,,JTIIEEEEII : Hﬂ""ﬂu; ”l:' 1
FRINT"&":TH
FOR M=1 TO &:
FRIMT"GGE": TH
FFIHT""“'TF‘

PEEE (M L HERT

CERR TR MERT

"IPRIMT:RETURH

SERL RSN HMAGED!
FREIMT!": IMATED FOR REFAIR, ":GOTO 75
IF Dii 4 EOE ArEOT0 AT
MUSTC R :FFIHT“E“'LE Tos® DEMAGED" i PREINT 4wty

FRIMTLL
GOTO 18

1" VEQRS ESTIMATED FOR REFRIE.

7 FEINT"E++ STHRTREEE ## STARTREE #+ STARTEER ##"
= EHELE THH

5 SR BREET

= FiR I*? Tu 1 EEE HEHT

=las BREINT VECRUETE

Sl PPIHT'HSEEESEEBE

Sl =l EREIHT E

5146 PRIHT“" s

5] PR T i e

S1EE T IE="HEaEann"

GET Ef:II=LEMcvEF i [F II=8 E0TO 5186
E{RHEE )
=R TIE ¢ IF W epid 50TO SEE0
SUTL S166A
FRIMT'H" s FRIMT THEC
FEIMT:FEIMT : RETUREM
A MUSTC MREPRINT"E" "8 <
1 R TR e, BT 5
FRIMT“Dosmms
FRIMT" 1 rosommmesmmsr—
FRIMT! o Lol
FEIMT" i
FRIMT"
FRIMT
FRINT"
FRIMT!
FEIMNT!

$"BIDODDD": GF: "

Je)

mf = s = =




FRINT"
FRINT"

FREIMT
FRIMT
FREIMT
FRINT
FRINT
FREIMT
FPRINT
FEIMT
FRIMT
FREIMT
FRIMT
A FRIMHT
3 FRIMT

e

FRINT"2"s T

L48="A5"03
Sig= " F4FGR
15 LEg="EER":
P TERRENS

T 1_[ 4L1“F IJ_' "
_El_[4 GARTES G AR LS D GERGEEORGRG

- PRIMTY !
i FREIMT" !
FETURM
3 FRIMNT"OSDDE s
3 FOR ID=G TO gk
G FREIMT THEC25): "k EEHEEF"
FRIMT"GGaa"
4 PREIMT THREC2S5:: 35 EE"
A FRIMT"BERE"
HEXT ID
RETLIFH
M PPRIMT"EEESBR0R. SFOCH
FOR Ck=1 TO S:sl=CU0-
FRIMNT"OOORE"

1 :Gﬁ HEHT: FRIMT "
FRINT THE:390:

TEHFH

T

R T
Adaw 3

23

B2
=]
Bl B3

us_ s
"

[N T NIy
T

: G e T
RETLRH
4"EUR'E | S i S s e o D T

41

"IFOR CY=1TOOZ
THERT:FRIMT"E"

PHESTEPRINT"GY




24

MODIFICATIONS TO WORD-PROCESSOR WPI

by

P.L. BIRCH

If you are fortunate enough to possess a printer for your computer a
word-processing program is an extremely useful addition to your software
'armoury'. Full scale commercial word-processors are, however, very expensive
and prpbably much more sophisticated than is required for casual, non-business
use. The WPI 'mini' word-processor marketed by Sharpsoft is a much simpler
(and cheaper!) beast, but I have found it extremely useful for normal
correspondence and such jobs as writing this short article. A further
advantage is that, being written in Basic, the program may quite easily
be amended to tailor it to one's own particular needs. As an inveterate
tinkerer, I could not resist this temptation, and I thought that perhaps
other 'User Notes' readers might be interested in some of my modifications
and additions to WPI.

The major additions are a routine for formatting text to any desired
number of characters/line (up to 79 maximum), and the ability to print repeat
copies of a letter with the addition of names added from a tape file.

Various other minor changes have also been made and I will detail these by
going through the accompanying listing more or less in sequence. The listing
includes only those lines which have been changed or added to the orginal
program.

LINE 5

This loads the short machine-code routine at 1700-1730 which is used by
the 'pause' facility dealt with later.

LINES 215/217

'XA' calls the new text formatting function. I couldn't think of a
suitable mnemonic initial - A for 'Arrange' perhaps? 'xW' calls the routine
for preparing files of names on tape.

LINES 310-316 & 430-436

These routines, in conjunction with the subroutines at 1700-1760 add a
pause function to the screen listing and printing functions. Pressing the
'x' key will cause the listing or printing to stop. Key 'R' will return to
the main program for a new command, repeated pressing of 'X' will single-step
the listing, and any other key will cause normal listing to resume.

LINES 350-415

The 'title' function is a useful facility in WPI, but there are times
when it is not required. These changes make it optional, the program
prompting for a 'Y' or 'N' before printing.

LINES 450-455

This section provides a repeat printing facility. When requested for
hard copy during the 'Print' function, the program will prompt for the number
of copies required and print these automatically. Entering any non-numeric
character in reply to this prompt will access the routine which enters names
from a tape file (see mext section).




25

LINES 480-495 & 1770-1960

Sending the same letter to a number of different people is a function
which is very conveniently carried out with a word-processor. It is rather
tedious to change the addressce's name manually and print out each letter
individually. This routine avoids this by reading in the names sequentially
from a tape file and inserting them into the appropriate position in the
text., Text is prepared for this by using the symbol '@ (second key from
right in bottom row with SML/CAP lock in operation) to indicate the position
in text where the name is to be inserted. The same symbol is used to mark
the start of the line in which the insertion is to be made. This avoids the
need for the program to search every line of text. The first line of a
letter might therefore be entered as WDear®,'. This would appear as (for
instance) 'Dear Mr. Smith,' on printing. The '®' symbol is also used as an
end of file marker by using it to terminate the last name in the tape file.
Tape files may be prepared using the routine provided at line 1900, or
generated by an external program. I use a mailing list program which prints
address labels and generates the name file at the same time. The routine is
called by entering a non-numeric character in response to the 'number of
copies?' prompt in tke 'Print' routine.

LINE 890

This enables text containing commas to be saved to, and loaded from,
tape. Previously this caused truncation of the text at the comma. This is
avoided by writing a double quote as the first character of each line of
text.

LINES 1105-1107
This simply adds the new commands to the menu.
LINES 1330/1340

These minor changes correct the tendency to truncate lines which
previously occurred when the '¥F' function attempted to replace a string
which was found more than once in the same line. I have also deleted line
1320 which prevents overflow to more than 79 characters per line as a result
of replacement. I now permit this overflow to occur and correct the line
length subsequently using the new '¥A' command.

LINES 1400-1670

This is the text formatting routine, called by 'X¥A'. It permits text
to be rearranged to any number of characters/line (maximum 79) by shifting
words between lines. Sections of text may be formatted by entering the
start and finish line numbers. 'A' (All) and 'E' (End) may be used as in
the 'list' and 'Print' commands. Lines with leading spaces are not merged
with the preceding lines during formatting, so paragraphing is preserved.

Finally, a totally unrelated point which chanced to come to light
during preparation of the listing for this article. The 'LIST/P’
command in Sharp Basic causes a form feed character to be output to the
Printer before the listing starts. This can be inconvenient and expensive
in paper when listing short sections of code. POKE 15478,0 will disable
this function and POKE 15478,13 will cause a line feed imstead of a form
feed. POKE 15478,15 restores normal functioning.



26

15 IFC#="R"THEH]1 456
17 IFCE="W"THEH1 286
FORI=KTi

PFRIMTI: ""iE$CID

-HTHEML =F5

4THFHBD:UE1
THEHVE
HETIGWmW1

Z5E INFUT"FROM 7 '@ IFACSO S0 =a8THEM:=1 Y=L GOTOE93
IFASCCZ2F =8 3THEHY=L 2 GOTOE9E

I OIMPUTUIMCLULDE TITLE *":T#
S T=8: [FASCOT$3=23THEHT=1

FITHEHSZR
HZETFRIMTI IR FRIMTIZS I PRINTIZS

”"LT+1H' IFFS *8THEH1=F%Z

458 IHPUTYH® . OF COPIES 7 HOH: TFUAL CHO$3=8THEN MC=1:RF=1:
441 AL CHC#F D s RF =6
352 F1=1TOMC TFT =1 THEHS 7@

455 PRINT-F:FRINT-F:FRINTF"R"OG0EUES2E

438 FORI=FTOV:IFCRF=12+CLEFTHEIACT b, 1="2 " 2E0OSLEBLFTE
7 FRINT-FAFCIN: IFRF=2THEHRF( Ii=A1$iRF=1

IFEF=1THEHRF=&

ME=STI

438 FRIMT-FiHEATF1: IFRFY *ATHEMRF =18 GOTO452"

A5 GOTOVE

F90 FORS=ATOI:POKESISA. B2 FRIMT . TCHRS (34 0 +R$ (40 s FOKEEI5E

1185 FREINT" A= FORMAT TEXT"
1187 PREINT® W= WREITE MAME FILE T TAFE"

IFRL=1THEMR$(M>=RA%: LC+LH-LD
1 FRIHTM: " " AFCMo s LO=LOHLN: GOTOL127E

A ZFEHERTH

JF=8: GOT0452




27

1468 FRIMT"EFORMAT TEST"
1482 ITHFUT"CHARS. <LIME CHA:-
1484 TFOCL =Pa+ 0L Cus

416 IHFHT“FPUH N5 R$r TFASH 2=03THEMK=1:Y=L: G0OTO14E8

0 B

STHEMY=1: GOTO 468
IFY *LTHEMFREIMT"FRST EHMD OF FILE":E0TO1438

IFLEH RE
IFLEHCAF
FORI=LEH
IFCMIDECH
HE TI:FRINT

Pag=CLATHENLISZ8
HTR% s GOTOFE
—LEFTI AECEY =12

WA THEM1 S5

d=" A THEME=M+1 8 GOTO1 468
FOR+" " HAFCEFL 2 2E0TOL 658

= EHCRE |+LEFT$’ OFcs+1 . I-1 00 SCLTHEHIES
] CLTHEMM=5+1 2 G0TO14E5

.~+1 aa=TaaE0TOl e

ITOL:RFCIs=AF I+ D1 HEKTI
GOTOI468

A LT=532680: LIMIT LT
1 FORI=GTO 'EHD B
DATH ZB5.27.8.5
RETLIEM
hETE—

SE=""THEM1F5E
CRSE I RETURM

EF=6: IFJF=ATHEMFRINT" IMSERT HAMEFILE TAFE":ROFEM: JF=1
THFUT THMF

IFRIGHTFCHME, 1 b=" 2 THEMME=LEF T#CHMF . LENCHME~1 3 EF =1
AlF=AFC10:iRF
FECL=RIGHTHFCAF T 0, LEMCAFCI 2 0~1 1
FORT=1TOLEMCAFCT 30
IFMIDFCAFCT . Ja 1 o="0" THEH 1 &4 6
HESTJa FRIMT"eHOT FOLUME IH LIME": I:RF=8:A%{Ir=A1§:(
A AFCLO=LEFTECAFCT 0. T 0 tHME+RIGHTH O AF T 2 LEMCAF (T 2
RETURH
FREIMT"EIHEEET TAPE AMD EMTER HAMES A% FROMFTED®
FRIMT"TERMIMATE LAST MAME WITH -~ ":FRINT
WOPEH"HAMEFILE"

IHFUT"EMTER HAME": HME

FRIMT-THME
A58 JFRIGHTEOHME, 1 3="o"THEMCLOSE : GOTOFE

SE GOTO19Z8

SE: RETURH
i




28

Binomial Distribution
by

Paul Wood.

The "Binomial Distribution" program simulates an experiment in which
marbles are rolled through a series of pins arranged in a triangle. At
each pin the marble can either go to the left or the right. If the
probability of these events is equal then the majority of the marbles will
reach the central position at the bottom of the pins. The number of
marbles on each side of this position decreases rapidly according to
the binomial distribution curve: Thus the program visually shows how a
binomial distribution is formed. This has many uses in education when
teaching probability distributions.

Added features are:—

1. The facility to vary the probability of a marble going to the left or
right. The two individual probabilities must, however, have a sum of one.
This results in a binomial distribution offset from the central position.

2. The execution speed of the program can be varied. This allows a great
many marbles to be rolled in a short time or at a slower the path of each
marble can be followed.

3. The number of marbles can be varied - the higher the number of marbles
the closer the experimental distribution is to the theoretical distribution.
4. The mean and standard deviation of the distribution are also displayed
on the screen.




**% BINOMIAL DISTRIBUTION **** ‘

REM SET VARIARLES
160 PRINTR"SUIM ACR0)iFaS4009
D INFUT"Insut, erobability of turning right? "3FPR
INFUT"BIneut speecd (F/8)2 “iSF4
A2 INFUT"MIneut number of marbles: " 5NM
i REM SETSHRINGSUN T SCREEN
B]DO FRINT B
0846 X=4@uY=2aN=19
O@ U FOR Tw=1 TO 19
X1=XtYi=Y:FOR I=1 TO N
@ SE XUsyaraL g
XKl=x1-28Y1=Y1+2
) NEXT I
DaY=Y+2 uNa=N-L aNEXT T
FOLLS MARBLES DOWN SCREEN
3E PRINTHEA e 33 4 4R 0 Number af marbless-
Bi46 FOR N=1 TO NM
DOFRINTUEUSNG TR

IF RNDCL)YFR THEN M3=39:6070 209
MB=41
FMy@EFOKE FMAMS » 72 8 FM=FM+MS
55257 THEN GOSUB 400
LEI=INTCCPM=F )/2)8AC 1)=AC T )+1
NEXT N

Z=0:FOR I=6 TO 20
IF ACI)Z THEN Z=ACI)
NEXT I:SC=26/Z
i REM FLOTS GRAPH AXIS
278 FRINTE
@280 FOR I=1 TO 21
@278 FRINT") "

36@ NEXT I

FRINT" OIS T3 4547 89T T3 Tur ST 7mETo
) REM FLOTS GRAFH

0340 FOR T=0 TO 19:T1=TK2+BG+F~1

AZ50 IF ACI1)XSC=0 THEN 399
BI60 FOR J=0 TO INTCACT IXSC+@.5)
@370 FOKE I11,239:I1=11-48

0320 NEXT )
0390 NEXT I

375 REN C AUl RN AT TN

@&ﬂU

@410 ¢ L=
0426 Hs H+EACT KT 8 NEXT I

430 AV=H/NM

944B FOR 1=0 TO 19

34560 S=5+A( T KIKL:NEXT I

044D 5=5/N-AVXAY

0476 AJ=INT(SKXAV+0.5 )/SK

@460 E0=INT(SKEASAR S )+0.5 )/ SK

2490 FRINT THYHK AVEE VR EVARRRIGEV I EMean =" 5AVF" Stod.Deviation ="35n;"}

2caen GoTo 580
0688 FOR D=1 TO 200:NEXT DzRETURN




X (]

I

LA I

[2

A LA e G G o
=g e

30

Bird Noises
by
Y. Shah.

This short contributed program allows your M2-80k to produce 'bird °
noises" !

EEH BIRD NOISES EY Y.SHAH
FEM

FRINT"E"
FRINT"D pareal
FRINT" '
FRINT"
FRINT"
FRINT"
PRINT"
FRINT"
FRINT"
FRINT"
FRINT"
FRINT"
PRINT"
PRINT"
PRINT"
FORA=1T01666: NEXT
POKE4514. 1
FORF=1T0168: FORY=1T0100: NEXT
PRINT"D “
PRINT" fo b
PRINT" ol
PRINT" e |
PRINT" N
PRINT" A
POKE4514, 1:FORC=1T05: FORE=255T01 STEP-26: POKE4513, B USR (68> 1 NEXTE: C
FORC=1T04: FORE=255T015TEF~6: FOKE4513, BT USR (68> HEXTE, C ;
PRINT" -
PRINT" rREEE
32 FRINT" [ !
PRINT" =
PRINT” I
PRINT" e
PRINT " ¢ 3
USR(71 32 NEXTA

| O N e et el Bl Y I ¥ M Y RO O
| S RS W RN i AL B N I S ]

i

S OV N O O
DR e SR

SRR ]

A




31

TINY PILOT

PILOT is a text oriented interactive language for use by
teachers and children on small computers. Its simple syntax and
free format encourage innovation and use by those frightened by
computers ox who lack time to learn a more coumplex language.

PILOT was developed in 1969 at the University of California
Medical Center by John Starkweather to meet instructional needs.

TINY PILOT is a menu-driven programming language which includes
the following options.

1. HELP - List the menu of options on the V.D.U.

2. LIST - List the stored PILOT program.

3. RUN - Run the PILOT program stored in memory.

4. CHANGE - Change one of the stored program lines.

5. NEW - Type in a new program - clearing the memory first.

6. SAVE - Save the PILOT program on cassette.

7. GET - Get the PTLOT program from cassette - clearing
the memory first.

8. INSERT - Insert a new line in the PILOT program stored in
memory.

9. FIND - Find a string of characters in a PILOT program

stored in memory.

10. DELETE - Delete a 1line in the PILOT program stored in memory.
11. EXIT - Exit to BASIC.
12. PRINTER -~ Turn the printer on or off.

After LOADing TINY PILOT the user menu will be displayed.

Enter your selection command as requested; in full or the first letter
followed by <CR).

TINY PILOT is a subset of the PILOT language and is intended as a
programming system to introduce people to PILOT. A TINY PILOT program
consists of a series of program statements, one per line. A maximum of
79 charaters is allowed on each line. A program may have a maximum of
255 lines. The TINY PILOT syntax is as follows :-

1. The statement layout.

<ins truct ion) (modif;'eb : <operantb
whexe <insttuction> is a single letter indicating the instruction type.
<modifier> is an optional condition, which if false, causes
this instruction to be ignored.
Two types of modifier are allowed :-
a. After a numeric variable has been defined in a compute (C) g
statement it may be tested against any number in a modifier which
is enclosed by round brackets.




32

ba Inclusion of a Y or N after-(instructio@) allows a yes (true if
flag set) or no (true if flag is reset) test following the last
match statement.

2. Labels.

Labels have a * as their first character. Labels are referenced
without the * in JUMP (J) instructions and subroutine jump (U) instructions.
3. TYPE (T

The type statement prints on the V.D.U. the <§peranq> . Simple
formatting is included.

a. accepted string variables, for example

T ¢ Hello, what is your name?
A : N§
T : Hello Ng

b. Screen clear if the first two characters of
openand are ! H.

4. Accept (A).

The accept statement halts the program and prompts (outputs to the
V.D.U. a ? ) the user for an input. A string variable may be used with
this statement, for example

A : P$

5. Match (M).

This statement searches the last accepted input for a match and
sets the match flag, if a match is true. The special characters & and
! represent logical AND logical OR respectively.

6. Jump (J).

This statement causes a jump %o the named label.

7. Subroutine jump (U).

This statement is similar to the jump statement allowing a jump to
a labelled statement.

8. Subroutine return (E).

This statement is placed in a subroutine to return program control
to the line following the last U statement.

9. Compute (C).
In TINY PILOT the compute statement has the following form:-
a. C : &numeric variable) = {number)

same variable>

number >

Ctik HCm s (pumeric variab1e> same variable)

Its main purpose is loop and modifier control.

10. Remark (R).
This statement is ignored by the TINY PILOT interpreter. Its main
use is for comments in a program.

11 Quit (Q).
Inclusion of the quit statement in a TINY PILOT program will cause
the program to halt at this statement - if executed.

brw G 3 (numeric variablé}

n+n




33

The TINY PILOT listing is given at the end of these notes. The
program, although written for the M2-80k, was based on the best of the
ideas previously published in the popular computing magazines. We have
attempted to test TINY PILOT for errors. However, with a program of
this size it is impossible to trace all run-time bugs. If you use the
program and find bugs or make modifications please write to SHARPSOFT
user notes and we will publish your comments in a future edition.



34

b Tire Filot sk
~iaht SHERFSOFT Ltd.
FFIHT“E”‘FFIHT FRIMT

[IHFJE' : LB Lo 20

-
=
A
b
i

=
=

(5}
5]
5]
gL
=
5]
5}
1

e T e ]

IFlf‘“i“THEH
IFC#E="F"THEHN
IFC#="R"THEH
JTFCE="H"THEH
" IFC#="E"THEHN
IFC#="5"THEHN
IFC "G"THEH
IFH

[is] FEIHT“CHEM“

16 IMPUT"Bre wou sure 7 “303
oH TELEFT#c0%. 1 v*“""THEHiHJrE
GOTOZE8

O v
DR R Al s

)

IFI I—" YTHERZEG

S8 IFLEMH(EF:=1THEMIOSG

gE F=F+1

@ EOTOIE58

SEE IMFUT" = "i1Ef

518 IFEF="+"THEMRETUREH

CE=LEFT$E$. 13
IFC#="="THEHF 1=F: RETURH

A4 FORJI=1TOLEHCES

S50 IFMIDFECES.J. 1i=":"THENI& 18
8 HEXTT

IFLEMCEF »=1THENI &6
IFCF="+"THEHRETLIEH

FRIMT"—"> Swntax erropr”

GOTO1SE6E

FORI=1TO%
IFCHF=MIDECHE: T, 1 ) THEHRETURN

HEXTI

8 PREIMT"—> Swntax erpor”

] GOTO1 586

PEIHT"—>» Swvhntax eppor’

RETURH

A PREINT'"ELIST"

IMPUT"Fram 7 HEFIFASC

R T e e e el e e e e e
T T T X

=R I THEMRE=1:Y=F1: GOTOZEE8




LR
p g ST RN =L 8 GOT
1 8 PRAEEE SR R TR T F
s ERTHT AR i
! e
[REERIMTI " - s
HEMERTNT AR T
JE T T8 GOIT L2 e

IIIT"C'

i

l,.;)’;] ‘1‘“
FREIMT"
FREIMTS
FRIMTF#
IHFLT® :
Pl=Fl—1:F0OR
PR THT " ECHEM
IHF’UT L

e of srodrantiG0TO4E G

PERIMT: FT‘HH
i IE1 SEE

FRINT"EIHSERT"
IMFUT"Af ter line pumber 7 "iE
1 #F 1 THER FFIHT"FI'I T g of peodean "EGOTOSE1E

SEPRINT
L EETER =18 P C 0P 0= 13 HERTY
THFUTOLEG TERT 7 50083 LO=LEH (0% )

IMEUT"HEW TEXT 7 ":HE1LH=LEMiH3 )
IMPUT"From 7 "$x5: IFASCOE =68 THEN =1 Y=F 11 GOTOTBEE




36

wm=URL O EE
IHFUT"To 7 ":12%
IFAE J=BATHEHY=

RL =@ IHFH%“FEFLHE
5/ TEFE= iTHEHFFIHTAF"

3 PRINTAF

C LL+1 TFL’+L_lli —L-THEH“IUU

M GOTOZGRE

FE=MTIDFCPE O 1 Lo +HE+MIDECPE O, LOHL O+
IFLEMCA THEHFRIMT"LIME "sM:" TOO LOHG":
IFREL=1THEHFP# M =A%
- IFFP=1THEHPEIHT“H o ? "ERECH

3 FRIMTM:" = "sPEcMxLO=L0+1:G0TOF 166
AE PRIMT " ERUHY

A L1=[
4 FORP=1TOF1

IFLEFTHIPECF Y, 1 a="+"THEHZ1Z8
GOTOE] &8
B Ll=L1+1
3 LFCL L D=MIDECFF IR ba s LEHCFFIR ) 20

L PP=g =8

5 g
IFP1=BTHEMFRINT"Ha mrosran’: GOTOZ00
F=F+1

CH=LEFT#iF$F 3,

TFCeo s THENPRINT End of
IF.]!.—."{_H'I_}_' .; ,i
IFCMIDFCFELP
IFCMIDFLF$CF
FORI=1TOLEH(FEF
IENIDS PSR, 1, 13

o pap s GOTOZE8

H

P THEHSS8E

“'+'Dt=”}“bTHEH8659

FEINT"Svntax erpror. LIHE ":FrEoTozog
IFGI=GTHEMFREINT "Yariaokbls error. LIME "i1PigOTOR
FORH=1TOR] ;
IFMIDFECPECP Y, T+ E-T-1 r=0F H THEHS
HE=TH

FEIMT"Uariokle error. LIHE MrPeEOTOZ
J=URL CMIDECRF B S e

IFDF=" >"THEHM

of o pam’ : GOTOVERE
FTHEHEL=1

2 1a=MILFCPEC . P LA THENT 126

l’“
=




*“T”TH[HHH
="M THEMGED
=R THEME
S|
=N THEMEGE
e THEHEI

—"l “THEHL-'U_LnEl l._ _:"Z‘
FFlHT”Errur i lims "iF
GOTOZES
IFLEMID
IFLEFT#
IFLEHT
DF=MI0E:
i=1
I=1+1
IFU=8THEHL1Z
IFMIDFDFE. .10
EOTOL
FORI=1TOW]

IFLEFTHOUE T, 20=MI0F D, I-1. Z2THEHLIT 168
l;l'lTl'll 1 =

ZTHEHI1ZELG

="H"THEN FRINT"E"
HEHRETURH

21 LEMCDE

5]5]
=“$"THEHIH_L1

1EOTOL 1386

l:l ITI 1 1';'. 5
=]+LEM L

EiDTI:ll 1388

HEST.T

IFT<=LEMCDE I THEHLL 1 18
FRIMT [F
FETI IFH

A A DA R R o R LR

1

- ""'THEHI oL}

=

l

PR R R R o

i
1T

=
T

FETf IFH
IFLEH [-%" (2 THEMRETLUREM

b et B B

=
T T

1

Coproaramt i EOTOR

i

:
=




38

GOTO12E226
vEL THL L LEHCDED

IFPIGHT$N<$F
RETLIEH %
D=L EFTFCD#E LEMIDFE -1
FETURH
S=R 2=

L J= H141FHI~l

="E"THEML 2536

A THEHRE TLRH
i
LB 2736

ll‘HI[$ AL B J-M2=1 3 THEM 1 2738

FETHFH
IHRUT "2 "sEF
IFDE=""THEM1Z838
GOTOL 2850
FA¥=E¥$

A RETURH

IF”‘“UTHEHI

IFLEHNCE 7THEH1"1HH

Fo li="w N THENLZ 166

ariakle error. LIME "3iF:RETLUEH
1

LIME "sF:"apd "31:RETURH

T 1=0E+0E
FETLRH

S S S S S S S e e e S S S S T el




39

HESTI
FFIH( iz

lokel #rrars LIME "t1FIRETLRM

nl‘ Fi LSBT i fETLURH
1H J I

TR

LELENEES IS STHENFRIMT Syt ax srtor. LIME :RETLURE

P 1IHIIH [

JIHIPT‘bT Ix J'"“‘:"”TrJ
AT T

T T
TLUREHM

FRINT"ES
IMELUTFil

|
IFLEFT#:Fs
= +18 FRINTR
M TE R

| (0]
ITHE HFF= 1

i l HlHi#!flll”nubiuutiﬂe retidrn error. LIME "iFiRETURH

El=t s BEol s=tn U e BOTORES



SHARPCOF
NEPANCI Y J 5 Sharpsoft Ltd,, 86-20 Paul Street, London EC2A 4NE

Printed by Oldham Press (T.U. } , Chatham, Kent.






